CAGE法を用いた子宮体癌におけるリンパ節転移予測マーカーの同定

Identification of molecular markers associated with lymph node metastasis in uterine endometrial cancer

Emiko Yoshida1,2, Yasuhisa Terao1, Noriko Hayashi1, Kaoru Mogushi3, Atsushi Arakawa4, Yuji Tanaka2,5
Yosuke Itou1,3, Hiroko Omiya5, Yoshihide Hayashizaki6, Satoru Takeda1, Masayoshi Itoh2,6, Hideya Kawaji2,5,6

1 Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine
2 Ureteral Disease Research Center, Juntendo University Graduate School of Medicine
3 Preventive medicine and applied genomics unit, RIKEN Advanced Center for Computing and Communication
4 Division of Genomic Technologies, RIKEN Center for Life Science Technologies
5 Department of Human Pathology, Juntendo University Faculty of Medicine
6 RIKEN Preventive Medicine and Diagnosis Innovation Program

Abstract

Purpose: Lymphadenectomy is recommended in endometrial cancer (EM Ca) treatment; however, it increases the risk of complications such as lymphedema. Given that lymph node metastases (LN+) are rare in low-risk groups, discrimination between LN+/- status before lymphadenectomy would be highly valuable, but no effective methods have been developed to date. In this study, we examine the assessment of gene expression profiles in primary tumor as a diagnostic tool minimizing lymphadenectomy.

Experimental design: Fifteen EM Ca tissues (5 LN+ and 10 LN-) diagnosed as endometrioid adenocarcinoma Grade 1 with less than one-half muscle invasion were subjected to cap analysis of gene expression (CAGE) and subsequent computational screening. The resulting biomarker candidates were examined by quantitative reverse transcription PCR (qRT-PCR) in 115 EM Ca. In addition, their expression levels were validated using fluorescent in situ hybridization (FISH) and immunostaining.

Results: Genome-wide screening based on CAGE and targeted examination based on qRT-PCR revealed a significant association of gene X and gene Y isoforms expressed through a novel promoter, with LN+/- status in a low-risk group. Gene X and gene Y isoform were highly expressed in LN- (p <0.001) and LN+ (p <0.05) respectively. The difference in their expression levels was effective in discriminating between LN+/- status (AUC = 0.929).

Conclusion: Our study identified two genes, gene X and the novel gene Y isoform, as biomarkers for assessing LN+/- status using EM Ca tissue only. These biomarkers may be used as a diagnostic tool to support clinical decisions that minimize irrelevant lymphadenectomy without increasing recurrence risk.

Background & Purpose

Uterine Cancer

incidence 15,000 / year mortality 1,000 / year

The primary treatment is surgery.

- Hysterectomy removal of the uterus
- Salpingectomy removal of both ovaries and tubes
- Lymphadenectomy removal of the lymph nodes

Low & Intermediate risk group

- Lymph node metastasis Negative 72%
- Positive 8%

High risk group

- Lymph node metastasis Negative 8%
- Positive 12%

Lymphadenectomy not to be required (does not improve survival rate)

Lymphadenectomy to be required (improves survival rate)

- Invasion of surgery
 - Lengthening the time of a surgery
 - More bleeding
 - Longer hospital stay
 - Lower incision

- Physical burden
 - Lymphedema
 - Activity limitation

- Deterioration of postoperative QOL
 - Diminishing job opportunities
 - Risk of unemployment
 - Cost burden for medical treatment

- Economic burden
 - Diminishing job opportunities
 - Change in her body image

Our purpose

- The objective of this study is to establish biomarkers in order to distinguish lymph node metastatic state before surgery.

- It will be realized to improve patient’s QOL by avoiding irrelevant lymphadenectomy.

Method & Results

CAGE is a novel approach for identifying gene expression profiling. CAGE differs from other major gene expression analysis techniques in its capability to accurately identify transcriptional start sites in a genome-wide fashion.

- endometrioid adenocarcinoma G1
- myometrial invasion ≤ 1/2

We compared the difference of the gene expressions between LN– and LN+.

Statistical analysis

- median expression >15 cpm
- fold changes of group means >16
- AUC static >95%

Identification of biomarker candidates

We found that expressions of gene X and novel isoform of gene Y were significantly associated with LN+/- states. The discrimination power of combination marker is further substantial as AUC 0.922. So we believed this combination marker was more effective discrimination of lymph node metastatic states.

Conclusion

- Our study identified the two genes, gene X and the novel isoform of gene Y, as potential biomarkers to distinguish LN+/- state.
- Their combination marker shows more effective discrimination of LN+/- states.